- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
MacDonald, Andrew_J (2)
-
Athni, Tejas_S (1)
-
Bharti, Nita (1)
-
Boser, Anna (1)
-
Caldwell, Iain_R (1)
-
Caldwell, Jamie_M (1)
-
Chase, ed., Jonathan (1)
-
Cheng, Julian (1)
-
Childress, Jasmine_N (1)
-
Childs, Marissa_L (1)
-
Couper, Lisa_I (1)
-
De_Leo, Giulio_A (1)
-
Farrant, D_Nākoa (1)
-
Grant, Elizabeth_A (1)
-
Hyon, David (1)
-
Kirk, Devin_G (1)
-
Kurzner, Patrick_M (1)
-
Kyaw, Saw (1)
-
Larsen, Ashley_E (1)
-
Lee, Brian (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Quantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor. In this study, we use a weather‐radar‐based bat‐monitoring algorithm to estimate bat foraging distributions during the peak season of 2019 in California's Northern Central Valley. This region is characterized by valuable agricultural crops and significant populations of both crop and nuisance pests, including midges, moths, mosquitos, and flies. Our results show that bat activity is high but unevenly distributed, with rice fields experiencing significantly elevated activity compared to other land cover types. Specifically, bat activity over rice fields is 1.5 times higher than over any other land cover class and nearly double that of any other agricultural land cover. While irrigated rice fields may provide abundant prey, wetland and water areas showed less than half the bat activity per hectare compared to rice fields. Controlling for land cover type, we found bat activity significantly associated with higher flying insect abundance, indicating that bats forage in areas where crop and nuisance pests are likely to be found. This study demonstrates the effectiveness of radar‐based bat monitoring in identifying where and when bats provide ecosystem services.more » « less
-
Athni, Tejas_S; Shocket, Marta_S; Couper, Lisa_I; Nova, Nicole; Caldwell, Iain_R; Caldwell, Jamie_M; Childress, Jasmine_N; Childs, Marissa_L; De_Leo, Giulio_A; Kirk, Devin_G; et al (, Ecology Letters)Abstract Vector‐borne diseases (VBDs) are embedded within complex socio‐ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population‐level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.more » « less
An official website of the United States government
